

W30 Hardware User Guide

Version 1.0

Copyright

Copyright © 2017 Neoway Technology Co., Ltd. All right is reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Neoway Technology Co., Ltd.

Neowoy 有方is the trademark of Neoway Technology Co., Ltd.

All other trademarks and trade names mentioned in this document are the property of their respective holders.

Remarks

This document provides guide for users to use the W30.

This document is intended for system engineers (SEs), development engineers, and test engineers.

The information in this document is subject to change without notice due to product version update or other reasons.

Every effort has been made in preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Neoway provides customers complete technical support. If you have any question, please contact your account manager or email to

Sales@neoway.com

Support@neoway.com

Website: http://www.neoway.com

Revision Record				
Version	Changes	Date		
Version 1.0	Initial draft	2017-09		

Contents

1 About W30	1
1.1 Overview	1
1.2 Block Diagram	2
1.3 Features	2
2 Application Interfaces	4
2.1 Specifications and Pin Definition	4
2.2 Pin Description	
2.3 Power Supply Pins	
2.3.1 Design of WLAN Power Supply	
2.3.2 Design of AUDIO Power Supply	
2.4 WLAN Application Interfaces	
2.4.1 SDIO Interface	
2.4.2 WLAN Control Interface	
2.5 Bluetooth Application Interfaces	
2.5.1 Bluetooth UART Interface	
2.5.2 BLUETOOTH PCM Interface	
2.6 AUDIO Application Interfaces	
2.6.1 Audio PCM Interface	
2.6.2 AUDIO I2C Interface	
2.6.3 Analog Audio interface	
3 RF Interface	24
4 Electric Feature and Reliability	
4.1 Electric Feature	
4.2 Temperature Feature	
4.3 ESD Protection	
5 RF Feature	
5.1 Work Band	
5.2 TX Power and RX Sensitivity	
6 Mechanical Features	
6.1 Dimensions	
6.2 PCB Foot Print	
7 Mounting and Packaging	
7.1 Mounting the Module onto the Application Board	

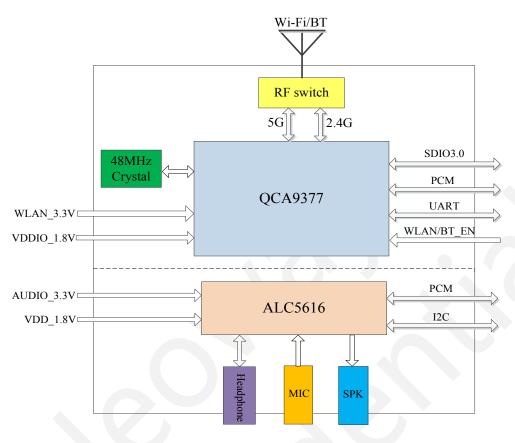
7.2 Package	
8 SMT Furnace Temperature Curve	
9 Abbreviations	35

Table of Figures

Figure 1-1 W30 block diagram	2
Figure 2-1 W30 pin description (Top View)	4
Figure 2-2 Reference design of 3.3 V WLAN power supply	11
Figure 2-3 Power on/off sequence of the WLAN	12
Figure 2-4 Reference design of AUDIO power supply	12
Figure 2-5 SDIO connection	13
Figure 2-6 Sequence of 32 KHz clock signal	14
Figure 2-7 UART connection	15
Figure 2-8 PCM connection	16
Figure 2-9 Power on/off sequence of the Bluetooth	16
Figure 2-10 PCM sequence in host mode	17
Figure 2-11 PCM sequence in device mode	18
Figure 2-12 Reference design of the I2C interface	19
Figure 2-13 I2C interface sequence	19
Figure 2-13 I2C interface sequence Figure 2-14 Reference design of headphone	
	21
Figure 2-14 Reference design of headphone	21 21
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface	21 21 22
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit	21 21 22 22
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit Figure 2-17 Reference design of the receiver circuit	21 21 22 22 23
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit Figure 2-17 Reference design of the receiver circuit Figure 2-18 Reference design of the speaker circuit	21 21 22 22 23 24
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit Figure 2-17 Reference design of the receiver circuit Figure 2-18 Reference design of the speaker circuit Figure 3-1 Reference design of antenna matching	21 21 22 22 23 24 25
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit Figure 2-17 Reference design of the receiver circuit Figure 2-18 Reference design of the speaker circuit Figure 3-1 Reference design of antenna matching Figure 3-2 Recommended RF PCB design	21 21 22 22 23 24 25 25
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit Figure 2-17 Reference design of the receiver circuit Figure 2-18 Reference design of the speaker circuit Figure 3-1 Reference design of antenna matching Figure 3-2 Recommended RF PCB design Figure 3-3 Antenna layout	21 21 22 22 23 23 24 25 25 25
Figure 2-14 Reference design of headphone Figure 2-15 Headphone interface Figure 2-16 Reference design of the MIC circuit Figure 2-17 Reference design of the receiver circuit Figure 2-18 Reference design of the speaker circuit Figure 3-1 Reference design of antenna matching Figure 3-2 Recommended RF PCB design Figure 3-3 Antenna layout Figure 3-4 Clearance around the antenna	21 21 22 22 23 23 24 25 25 31

Table of Tables

Table 1-1 W30 Features	2
Table 2-1 W30 dimensions	4
Table 2-2 W30 pin description	5
Table 2-3 Parameters of 32 KHz clock signal sequence	14
Table 2-4 Parameters of PCM sequence in host mode	17
Table 2-5 Parameters of PCM sequence in device mode	18
Table 2-6 I2C sequence parameters	19
Table 4-1 W30 Electric Feature	27
Table 4-2 W30 Temperature Feature	27
Table 4-3 W30 ESD protection	28
Table 5-1 Work band	29
Table 5-2 Wi-Fi/Bluetooth TX power and RX sensitivity	29


1 About W30

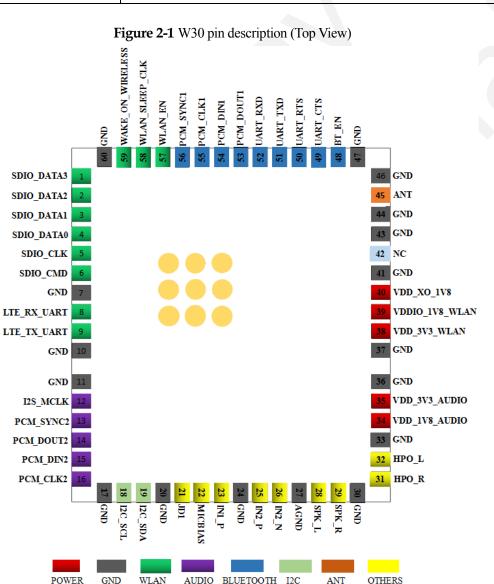
1.1 Overview

W30 is a compact low-power module that supports WLAN, Bluetooth, and Audio. Its dimensions are 20 mm x 18 mm x 2.2 mm. It is developed on Qualcomm QCA9377 chipset and in compliance with the 802.11 standards, so it supports 2.4 GHz and 5 GHz WLAN for high-speed data transmission. The Bluetooth function complies with Bluetooth 4.1 protocol and compatible with earlier versions, and also supports BLE mode. The Audio function is developed on the REALTEK chipset, supports different audio codecs, and provides high-quality audio through various processing interfaces. The module is used with N720 in notebooks, wireless routers/MIFI, Internet of vehicle (IoV), smart home, industrial automation and other equipment.

- QCA9377: WLAN and Bluetooth support low power SDIO 3.0, and UART/PCM interfaces
- Compliant with IEEE 802.11a/b/g/n/ac WLAN protocol, Bluetooth 4.1+HS, compatible with Bluetooth 1.x and Bluetooth 2.x
- Support 2.4GHz and 5GHz WLAN, 80 MHz at most
- Support earphone, SPK, and MIC analog audio interface

1.2 Block Diagram

Figure 1-1 W30 block diagram


1.3 Features

Specifications	Description		
Power supply	3.3V		
Idle current	< 20 mA		
Current in sleep mode	< 10mA		
T	Operating temperature: -25°C to 85°C		
Temperature	Storage temperature: -45°C to +90°C		
	SDIO3.0 interface		
	Compliant with 1x1 IEEE802.11a/b/g/n/ac standards		
	Supports 5 GHz 802.11ac and 2.4GHz/5GHz 802.11n		
WLAN feature	Supports 20 MHz, 40MHz@2.4GHz		
	Supports 20 MHz, 40MHz, 80MHz@5GHz		
	Maximum number of APs allowed to access: 15		

Bluetooth feature	Supports Bluetooth 4.1, compatible with Bluetooth 4.0, Bluetooth 3.0, Bluetooth 2.x and Bluetooth 1.x Supports GFSK, $\pi/4$ -DQPSK, 8-DPSK and LE modulation PCM/UART data communication interfaces				
Audio feature	PCM data communication interfaces I2C control interface ADC: 94dBA SNR, DAC: 94dBA SNR Two analog audio input: a single-end input, a differential input Two analog audio output: an output without gain, an output with 20 mW gain Adjustable Input/Output volume MIC and SPK analog audio interface Earphone detection				
Wireless rate	WLAN 2.4GHz: 802.11b: 1, 2, 5.5, 11Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n (20MHz): MCS0~MCS7 802.11n (40MHz): MCS0~MCS7 802.11ac: MCS0~MCS9 WLAN 5GHz: 802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n/ac (20MHz): MCS0~MCS7 802.11n/ac (40MHz): MCS0~MCS7 802.11ac (80MHz): MCS0~MCS9				
Antenna feature	1x1 Wi-Fi/Bluetooth antenna interface, 50Ω impedance				

2 Application Interfaces2.1 Specifications and Pin Definition

Specifications	W30
Dimensions (H x W x D)	(20±0.1 mm) x (18±0.1 mm) x (2.3±0.1 mm)
Weight	1.8g
Package	60-Pin LCC

Table 2-1 W30 dimensions

2.2 Pin Description

NOTE

IO: Input/Output	DO: Digital output	AI: Analog input	OD: Output drain
DI: Digital input	P: Power supply input	AO: Analog output	

Table 2-2 W30 pin description

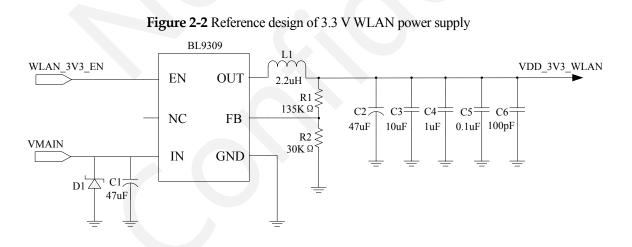
Signal	Pin	I/O	Function	Level Feature	Power Domain	Remarks
Power supply	·					
VDD_3V3_WLAN	38	Р	Main power supply of WLAN	Vmin=3.14V Vmax=3.46V Vtyp=3.3V		The maximum current can be at least 800mA.
VDDIO_1V8_WLAN	39	Р	WLAN I/O interface power supply	Vmin=1.71V Vmax=1.9V Vtyp=1.8V		The maximum current can be at least 300mA.
VDD_XO_1V8	40	Р	Power supply for WLAN crystal oscillator to pull up	Vmin=1.71V Vmax=1.9V Vtyp=1.8V		Pullup power supply of clock
VDD_3V3_AUDIO	35	Р	3.3 V power supply of AUDIO	Vmin=3V Vmax=3.6V Vtyp=3.3V		The maximum current can be at least 300mA.
VDD_1V8_AUDIO	34	Р	1.8V power supply of AUDIO	Vmin=1.71V Vmax=1.9V Vtyp=1.8V		1.8 V power supply of audio

GND	7, 10, 37, 41, 43, 44, 46, 47, 60		WLAN/BLUETOOTH ground of the module			
WLAN interface	I	1				
SDIO_DATA3	1	Ю	SDIO data 3	V _{OL} max=0.45V		
SDIO_DATA2	2	Ю	SDIO data 2	V _{OH} min=1.35V V _{IL} min=-0.3V	1.8V	Leave this pin unconnected if it is
SDIO_DATA1	3	Ю	SDIO data 1	V _{IL} max=0.45V V _{IH} min=1.35V		not used.
SDIO_DATA0	4	Ю	SDIO data 0	$V_{\rm IH}$ max=2.1V		
SDIO_CLK	5	DI	Clock signal of SDIO interface	NC	1.8V	Leave this pin unconnected if it is not used.
SDIO_CMD	6	DI	Control signal of SDIO interface	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
LTE_RX_UART	8	DI	Co-existing signal of LTE and WLAN, UART data input	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
LTE_TX_UART	9	DO	Co-existing signal of LTE and WLAN, UART data output	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V	Leave this pin unconnected if it is not used.
WLAN_EN	57	DI	WLAN enable signal	V _{IL} min=-0.3V V _{IL} max=0.45V	1.8V	High level triggers the ON status. Leave this pin unconnected if it is not used.

				V _{IH} min=1.35V V _{IH} max=2.1V		
WLAN_SLEEP_CLK	58	DI	Clock input signal of WLAN in sleep mode.	V _{IL} min=-0.3V V _{IL} max=0.35V V _{IH} min=1.45V V _{IH} max=2V	1.8V	Leave this pin unconnected if it is not used.
WAKE_ON_WIRELESS	59	OD	Control signal of WLAN communication	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V	Leave this pin unconnected if it is not used.
Bluetooth interface						
BT_EN	48	DI	Bluetooth enable	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	High level triggers the ON status. Leave this pin unconnected if it is not used.
UART_CTS	49	DI	Clear to send	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
UART_RTS	50	DO	Request to send	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V	Leave this pin unconnected if it is not used.
UART_TXD	51	DO	UART TX data of the Bluetooth	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V	Leave this pin unconnected if it is not used.
UART_RXD	52	DI	UART RX data of the Bluetooth	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.

PCM_DOUT1	53	DO	PCM data output of the Bluetooth	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V	Leave this pin unconnected if it is not used.
PCM_DIN1	54	DI	PCM data input of the Bluetooth	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
PCM_CLK1	55	DI	PCM clock signal of the Bluetooth		1.8V	Leave this pin unconnected if it is not used.
PCM_SYNC1	56	Ю	PCM frame synchronization signal of the Bluetooth	V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
AUDIO interface						
I2S_MCLK	12	DI	Input signal of I2S main clock		1.8V	Leave this pin unconnected if it is not used.
PCM_SYNC2	13	Ю	PCM frame synchronization signal of the AUDIO	V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
PCM_DOUT2	14	DO	PCM data output of the AUDIO	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V	Leave this pin unconnected if it is not used.
PCM DIN2	15	DI	PCM data output of the	V _{IL} min=-0.3V	1.8V	Leave this pin unconnected if it is

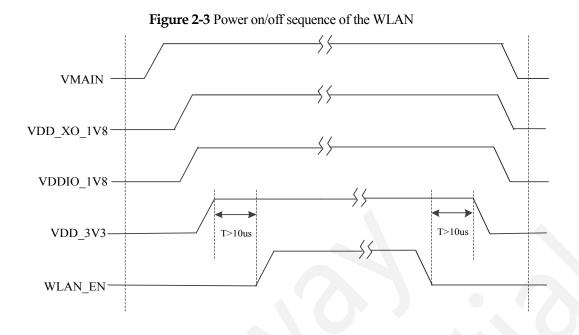
			AUDIO	V _{IL} max=0.45V V _{IH} min=1.35V		not used.
				V _{IH} max=2.1V		
PCM_CLK2	16	Ю	PCM clock signal of the AUDIO	V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	Leave this pin unconnected if it is not used.
I2C_SCL	18	DI	Input signal of I2C clock	V _{IL} min=-0.3V V _{IL} max=0.45V V _{IH} min=1.35V V _{IH} max=2.1V	1.8V	
I2C_SDA	19	Ю	I2C data signal Vol. max=0.45V Vol. min=1.35V V _{IL} min=-0.3V V _{IL} min=1.35V V _{IH} min=1.35V V _{IH} max=2.1V V _{IH} max=2.1V		1.8V	Add a pull-up resistor externally. Leave this pin unconnected if it is not used.
JD1	21	DI	Earphone detection	$\begin{array}{l} 3 types of level \\ detectable \\ (threshold): \\ V_{t1}=1.485V \\ V_{t2}=1.925V \\ V_{t3}=2.7V \end{array}$		Leave this pin unconnected if it is not used.
MICBIAS	22	DO	Provides MIC bias voltage	Vtyp=3.3V		Leave this pin unconnected if it is not used.


IN1_P	23	AI	Single-end MIC input			Leave this pin unconnected if it is not used.	
IN2_P	25	AI	Positive signal of the MIC			Leave this pin unconnected if it is	
IN2_N	26	AI	Negative signal of the MIC	Differential input		not used.	
SPK_L	28	AO	Positive signal of the SPK	Differential immet		Leave this pin unconnected if it is	
SPK_R	29	AO	Negative signal of the SPK	Differential input		not used.	
HPO_R	31	AO	Right sound channel of the earphone output			Leave this pin unconnected if it is	
HPO_L	32	AO	Left sound channel of the earphone output			not used.	
GND	11, 17, 20, 24, 30, 33, 36		AUDIO ground	10		The trace layout should be separated from the ground for WLAN/BLUETOOTH.	
AGND	27		Analog ground	0		Connected to the AUDIO ground and main ground. Ensure that the contact area of the connection between this pin and the main ground is big enough.	
Other Interfaces	i						
ANT	45		Wi-Fi/Bluetooth antenna pin	¥.		50 Ω impedance	
NC	42					NC	

2.3 Power Supply Pins

Signal	Pin	I/O	Function	Remarks
VDD_3V3_WLAN	38	Р	Main power supply of WLAN	The maximum current can be at least 800 mA.
VDDIO_1V8_WLAN	39	Р	WLAN I/O interface power supply	The maximum current can be at least 300 mA.
VDD_XO_1V8	40	Р	Power supply for WLAN crystal oscillator to pull up	Power supply for the crystal oscillator clock to pull up
VDD_3V3_AUDIO	35	Р	3.3 V power supply of AUDIO	The maximum current can be at least 300 mA.
VDD_1V8_AUDIO	34	Р	Power supply for AUDIO I/O interface	1.8 V power supply of audio

2.3.1 Design of WLAN Power Supply


VDD_3V3_WLAN is the main power supply input pin for the Wi-Fi function of the module. Its input voltage ranges from 3.14 V to 3.46 V and the typical value is 3.3 V. It is recommended that the maximum input current of the external power supply chipset should be at least 800 mA, which can fulfill the requirements for current in all kinds of work modes. The power supply is a critical path to module's performance and stability. The reference design of the WLAN power supply is shown as below:

In Figure 2-2, use TVS at D1 to enhance the performance of the module during a burst. SMF5.0AG is recommended. A large bypass tantalum capacitor (47 μ F) is expected at C2 to reduce voltage drops during bursts together with C3 (10 μ F ceramics capacitor). In addition, add 0.1 μ F and 100 pF filter capacitors to enhance the stability of the power supply.

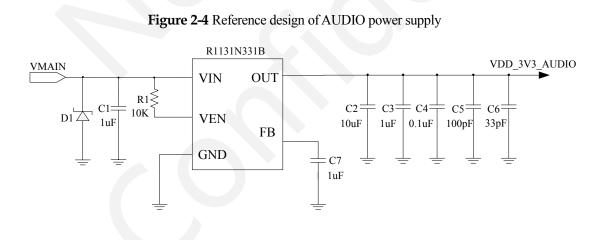
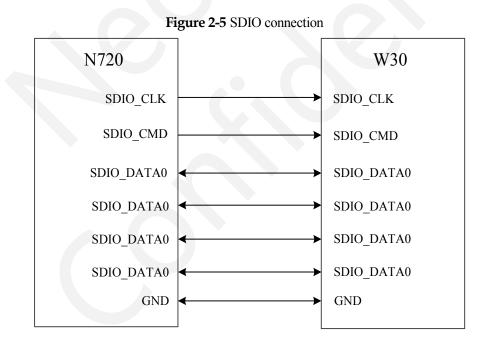

VDDIO_1V8_WLAN and VDD_XO_1V8 are respectively the internal I/O power supply of the module and the pullup power supply of the WLAN crystal oscillator. The level of VDDIO must be same as the I/O level of the host, and the maximum work current should be at least 300 mA.

Figure 2-3 shows the power on/off sequence of the WLAN.

2.3.2 Design of AUDIO Power Supply

VDD_3V3_AUDIO is the main power supply input pin for the AUDIO function of the module. Its input voltage ranges from 3.0 V to 3.6 V and the typical value is 3.3 V. It is recommended that the maximum input current of the power supply should be at least 300 mA, which can fulfill the current requirements of the AUDIO function. The reference design of the AUDIO power supply is shown as below:


VDD_1V8_AUDIO provides 1.8 V power supply input for the AUDIO and loads a very low current. The external 1.8 V voltage is introduced into logic inputs to pull up the internal IO interface.

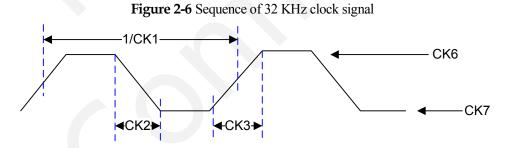
2.4 WLAN Application Interfaces

Signal	Pin	I/O	Function	Remarks
SDIO_DATA3	1	Ю	SDIO data 3	Leave this pin unconnected if it is not used.
SDIO_DATA2	2	Ю	SDIO data 2	Leave this pin unconnected if it is not used.
SDIO_DATA1	3	Ю	SDIO data 1	Leave this pin unconnected if it is not used.
SDIO_DATA0	4	Ю	SDIO data 0	Leave this pin unconnected if it is not used.
SDIO_CLK	5	DI	Clock signal of SDIO interface	Leave this pin unconnected if it is not used.
SDIO_CMD	6	DI	Control signal of SDIO interface	Leave this pin unconnected if it is not used.

2.4.1 SDIO Interface

The WLAN function of the W30 module complies with 8-bit SDIO 3.0 Interface Protocol, and supports 802.11ac 256-QAM modulation. The transmission rate of the WLAN TCP/IP can reach 215 Mbps at an 80 MHz bandwidth. Figure 2-5 shows the SDIO connection between W30 and N720.

CLK, CMD, DATA0, DATA1, DATA2 and DATA3 are high-speed signal lines. Limit their characteristic impedance to 50Ω and do not allow them to cross any other traces. Ensure length matching for CMD, DATA0, DATA1, DATA2 and DATA3 traces. CLK trace should be grounded separately.


2.4.2 WLAN Control Interface

Signal	Pin	I/O	Function	Remarks
LTE_RX_UART	8	DI	Co-existing signal of LTE and WLAN, UART data input	It is pulled up internally. Leave this pin unconnected if it is not used.
LTE_TX_UART	9	DO	Co-existing signal of LTE and WLAN, UART data output	Leave this pin unconnected if it is not used.
WLAN_EN	57	DI	WLAN enable signal	High level triggers the ON status. Leave this pin unconnected if it is not used.
WLAN_SLEEP_CLK	58	DI	Clock signal of WLAN in sleep mode.	Leave this pin unconnected if it is not used.
WAKE_ON_WIRELESS	59	OD	Control signal of WLAN communication	Leave this pin unconnected if it is not used.

LTE_RX_UART and LTE_TX_UART are co-existing signals of LTE and Wi-Fi and can be used to send and receive UART data.

WLAN_EN is the signal to enable or disable the Wi-Fi function. It is pulled down internally and a high level trigger. For its power on/off sequence, see Figure 2-3.

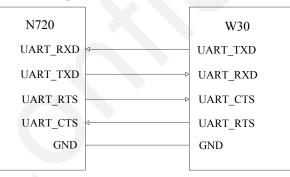
WLAN_SLEEP_CLK is the clock input signal of the Wi-Fi function in sleep mode. The clock frequency is 32.768 KHz. When the WLAN function enters sleep mode, an external 32.768 KHz clock signal is required to wake up the module from different modes for data receiving. Figure 2-6 shows the sequence of the 32 KHz clock signal. Table 2-3 lists the parameters.

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Clock frequency	CK1	-	32.768	-	kHz
Fall time	CK2	1	-	100	ns
Rise time	СК3	1	-	100	ns
Duty ratio	CK4	15	-	85	%
Frequency error	CK5	-200	-	200	ppm
Input high level	CK6	1.45	-	2	V

Input low level	CK7	-0.3	-	0.35	V

WAKE_ON_WIRELESS is the communication control signal in WLAN mode. Operating at 1.8 V, this pin is an open-drain output.

2.5 Bluetooth Application Interfaces

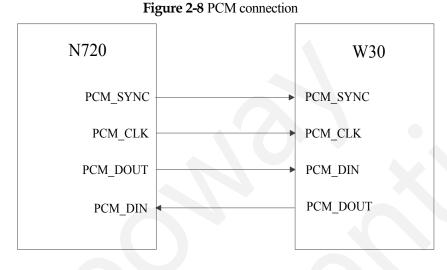

The Bluetooth function is implemented mainly by the UART and PCM data communication interfaces and the BT_EN control signal.

2.5.1 Bluetooth UART Interface

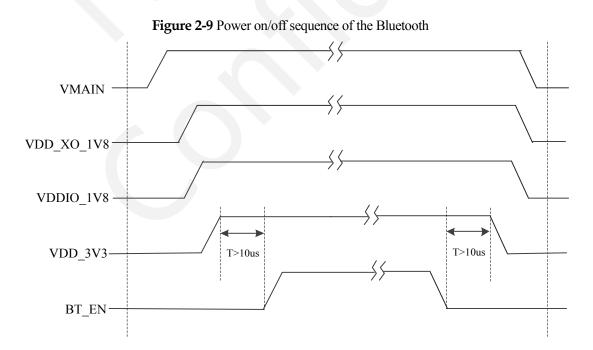
Signal	Pin	I/O	Function	Remarks
UART_CTS	49	DI	Clear to send	Leave this pin unconnected if it is not used.
UART_RTS	50	DO	Request to send	Leave this pin unconnected if it is not used.
UART_TXD	51	DO	UART TX data of the Bluetooth	Leave this pin unconnected if it is not used.
UART_RXD	52	DI	UART RX data of the Bluetooth	Leave this pin unconnected if it is not used.

The Bluetooth function of W30 requires one complete UART interface, which supports flow control and operates at 1.8V. Figure 2-7 shows the UART connection.

Figure 2-7 UART connection


2.5.2 BLUETOOTH PCM Interface

Signal	Pin	I/O	Function	Remarks
PCM_DOUT1	53	DO	PCM data output of the Bluetooth	Leave this pin unconnected if it is not used.
PCM_DIN1	54	DI	PCM data input of the Bluetooth	Leave this pin unconnected if it is not used.
PCM_CLK1	55	DI	PCM clock signal of the Bluetooth	Leave this pin unconnected if it is



				not used.
PCM_SYNC1	56	Ю	PCM frame synchronization signal of the Bluetooth	Leave this pin unconnected if it is not used.

In addition to UART interface, the Bluetooth requires a PCM interface, which operates at 1.8 V. Figure 2-8 shows the PCM connection.

The BT_EN signal controls the switch of the Bluetooth function. It is pulled down internally and triggered by high level. Figure 2-9 shows the power on/off sequence of the Bluetooth.

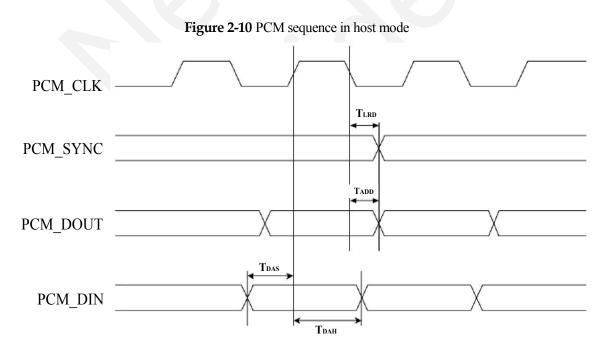
2.6 AUDIO Application Interfaces

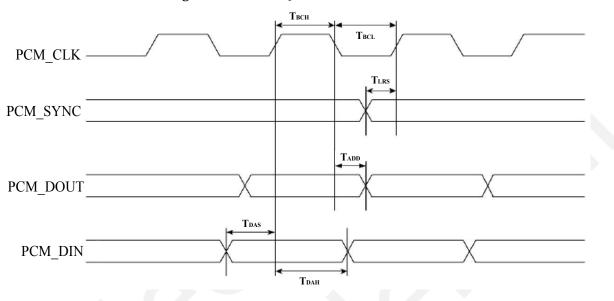
AUDIO interfaces include PCM, I2C, and analog audio interface.

2.6.1 Audio PCM Interface

Signal	Pin	I/O	Function	Remarks
PCM_SYNC2	13	Ю	AUDIO PCM sync signal	Leave this pin unconnected if it is not used.
PCM_DOUT2	14	DO	PCM data output of the Bluetooth	Leave this pin unconnected if it is not used.
PCM_DIN2	15	Ю	PCM data input of the AUDIO	Leave this pin unconnected if it is not used.
PCM_CLK2	16	Ю	PCM clock signal of the AUDIO	Leave this pin unconnected if it is not used.
I2S_MCLK	12	DI	Input signal of I2S main clock	Leave this pin unconnected if it is not used.

The AUDIO function of W30 communicates through one PCM interface. It supports both host and device modes and operates at 1.8 V. Figure 2-10 and Figure 2-11 shows the PCM sequence respectively in host and device modes.




Table 2-4 Parameters of PCM sequence in host mode

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Delay between frame synchronization and	T _{LRD}	-	-	30	ns

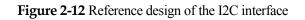
W30 Hardware User Guide

clock signal					
Delay between data output and clock signal	T _{ADD}	-	-	30	ns
Time period that data input signal is set up	T _{DAS}	10	-	-	ns
Time period that data input signal lasts	T _{DAH}	10	-	-	ns

Figure 2-11 PCM sequence in device mode

Table 2-5 P	arameters of PCM sequence in device mode	
-------------	--	--

Parameter	Symbol	Minimum	Typical	Maximum	Unit
BCKO pulse width high	T _{BCH}	20	-	-	ns
BCKO pulse width low	T _{BCL}	20	-	-	ns
Time period that synchronization input signal is set up	T _{LRS}	30	-	-	ns
Delay between data output and clock signal	T _{ADD}	-	-	30	ns
Time period that data input signal is set up	T _{DAS}	10	-	-	ns
Time period that data input signal lasts	T _{DAH}	10	-	-	ns


I2S_MCLK is the main clock signal referred by the system clock of the AUDIO. When PCM_CLK is configured as clock signal output in host mode, I2S_MCLK is configured as the main clock signal of the system. When PCM_CLK is configured as clock signal input in device mode, PCM_CLK signal should be synchronous with I2S_MCLK signal.

2.6.2 AUDIO I2C Interface

Signal	Pin	I/O	Function	Remarks
I2C_SCL	18	DI	Input signal of I2C clock	Add a pull-up resistor externally. Leave this pin

I2C_SDA 19 IO I2C data signal	unconnected if it is not used.
-------------------------------	--------------------------------

The AUDIO function of W30 allows one I2C interface to be control signal. The maximum rate at the I2C interface can be 3.4 Mbps and the interface operates at high level 1.8 V. Add a pull-up resistor externally. Figure 2-12 shows the reference design of the I2C interface.

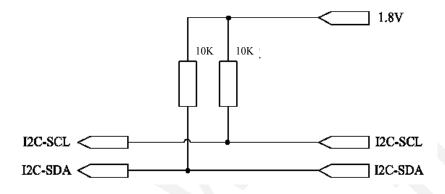


Figure 2-13 shows the sequence of the I2C control signal.

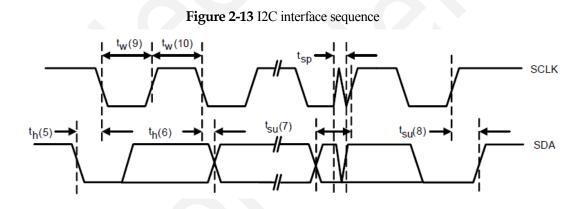


Table 2-6 I2C sequence parameters

Parameter	Symbol	Minimum	Typical	Maximum	Unit
BCKO pulse width low	t _w (9)	1.3	-	-	us
BCKO pulse width high	t _w (10)	600	-	-	ns
Clock frequency	F	0	-	400K	Hz
Time period that the signal lasts	t _h (5)	600	-	-	ns
Time period that data input signal is set up	t _{su} (7)	100	-	-	ns
Time period that data input signal lasts	t _h (6)	-	-	900	ns
Close signal setup time	t _{su} (8)	600	-	-	ns
Width that filter suppresses peak pulse	t _{sp}	0	-	50	ns

Signal	Pin	I/O	Function	Remarks		
JD1	21	DI	Earphone detection	3 types of level detectable (threshold): $V_{t1}=1.485V$; $V_{t2}=1.925V$; $V_{t3}=2.7V$		
MICBIAS	22	DO	Provides MIC bias voltage	Leave this pin unconnected if it is not used.		
IN1_P	23	AI	Single-end MIC input	Leave this pin unconnected if it is not used.		
IN2_P	25	AI	Positive signal of the MIC	Leave this pin unconnected if it is not used.		
IN2_N	26	AI	Negative signal of the MIC	Leave this pin unconnected if it is not used.		
SPK_L	28	AO	Positive signal of the SPK	Leave this pin unconnected if it is not used.		
SPK_R	29	AO	Negative signal of the SPK	Leave this pin unconnected if it is not used.		
HPO_R	31	AO	Right sound channel of the earphone output	Leave this pin unconnected if it is not used.		
HPO_L	32	AO	Left sound channel of the earphone output	Leave this pin unconnected if it is not used.		
AGND	27		Analog ground	It is connected to the main GND. Leave this pin unconnected if it is not used.		

2.6.3 Analog Audio interface

The analog audio function is implemented mainly by the Headphone interface, the MIC interface, and the SPK interface.

Headphone Interface

The headphone interface uses the JD1, MICBIAS, IN1_P, HPO_R, and HPO_L pins. This interface can detect headphone automatically and the volume can be adjusted by AT commands. Figure 2-14 shows the reference design of headphone circuit.

MICBIAS

IN1_P<-

JD1<<-

HPO L

HPO_R>

111F

1uF

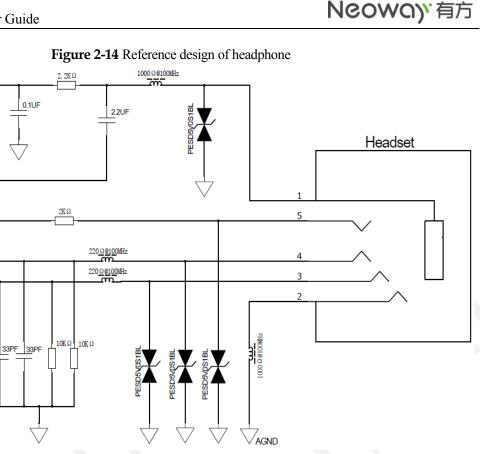
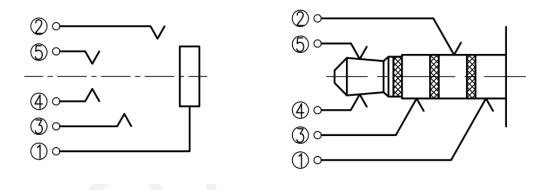
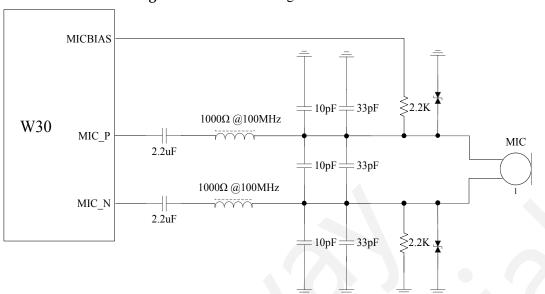
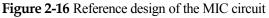
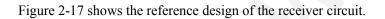



Figure 2-15 Headphone interface


Please note if the headphone is CTIA or OMTP. The connections of ① and ② are reverse for the two type of headphones. The JD1 pin (⑤ in the above figure) is unconnected if the headphone is not plugged. After the headphone is plugged, this pin is connected to GND through the left channel (8/16/32 Ω) loudspeaker of the headphone.


Differential MIC/SPK Interface


MIC_P and MIC_N are the differential signals of MIC. Generally condenser microphone is recommended.

SPK_P and SPK_N are the differential signals of speaker. The volume of MIC and SPK can be adjusted through AT commands. For details, see the Neoway_N720_Wi-Fi_AUDIO_Application_Guide_V1.0.

Figure 2-16 shows the reference design of the MIC circuit.

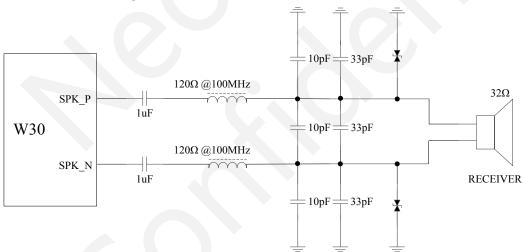
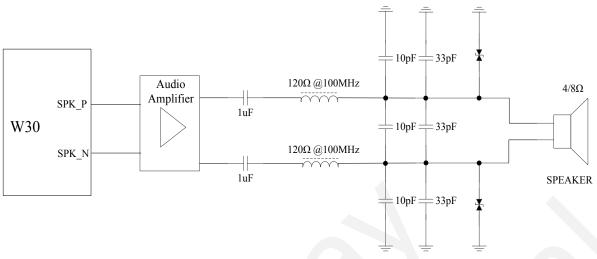



Figure 2-17 Reference design of the receiver circuit

Figure 2-18 shows the reference design of the speaker circuit.

Figure 2-18 Reference design of the speaker circuit

Audio Design Cautions

- On the PCB board, beed, filter capacitors, ESD components should be placed as close to the audio components as possible.
- Traces should be as short as possible and be far away from antenna and power supply.
- Differential traces should follow the design rules.
- The audio signal traces should be wide enough on the PCB to bear large current when the module output audios at the highest volume.
- The traces should be isolated from digital signals and clock as well as other analog signal traces. No signal trace crossing is allowed. Reserve enough grounding holes and ground protection.
- Do not connect the audio output pins to GND.

3 RF Interface

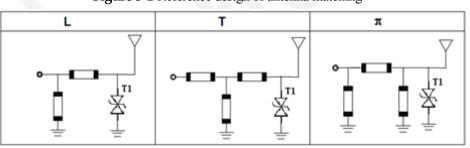
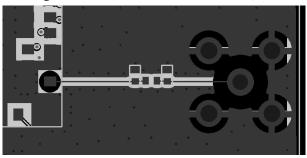
Signal	Pin	I/O	Function	Remarks
ANT	45	AI/O	Wi-Fi/Bluetooth antenna	50Ω impedance

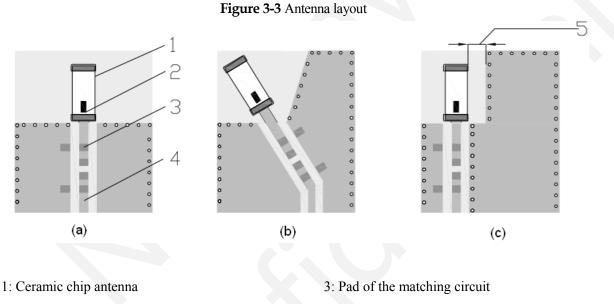
The 45th pin of W30 is the Wi-Fi/Bluetooth antenna interface and the impedance is 50 Ω . It can connect to 2.4G/5G ceramic chip antenna or magnetic antenna. The antenna should be well matched to achieve best performance. It should be installed far away from high speed logic circuits, DC/DC power, or any other strong disturbing sources if developers use RF cable to connect.

It is recommended to add an ESD protection diode to the antenna interface in an environment with great electromagnetic interference and other applications with bad ESD. The ESD protection diode must have ultra-low capacitance (lower than 0.5 pF). Otherwise, it will affect the impedance of the RF loop or result in attenuation of RF signals. RCLAMP0521P from Semtech or ESD5V3U1U from Infineon is recommended.

In PCB design, the RF trace between the antenna pad of module and the antenna connector, should have a 50 Ω characteristic impedance, and be as short as possible. The trace should be surrounded by ground copper. The distance between the RF traces and ground copper should be twice of the RF trace width. Dig as many ground holes as possible on the copper to ensure lowest grounding impedance.

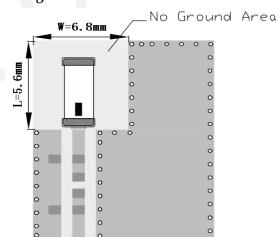
If the trace between the module and connector has to be longer, or built-in antenna is used, a matching circuit is needed, as shown in the following figure.


Figure 3-1 Reference design of antenna matching

T1 in the figure is an ESD diode (optional). Developers can choose one type of the matching circuits in the figure. The π -type is recommended. Big RF solder pad can result in great parasitic capacitance, which will affect the antenna performance. Remove the copper on the first and second layers under the RF solder pad.

Figure 3-2 Recommended RF PCB design


Refer to the following antenna layouts if a ceramic chip antenna is used.

2: Feeder

The first type of antenna layout is recommended if the PCB is big enough. Number 5 in Figure 3-3 shows the area between the antenna and the ground Figure 3-4 shows the clearance if this area.

4: 50 Ω transmission line

Figure 3-4 Clearance around the antenna

On the PCB, keep the RF signals and RF components away from high-speed circuits, power supplies, transformers, inductors, the clock circuit of MCU, etc.

4 Electric Feature and Reliability 4.1 Electric Feature

Module Status		Minimum Value	Typical Value	Maximum Value
WLAN_3.3V	Vin	3.135 V	3.3 V	3.465 V
	Iin	-	-	800 mA
	Vin	3 V	3.3 V	3.6 V
AUDIO_3.3V	Iin	-		300 mA

Table 4-1 W30 Electric Feature

- If the voltage is too low, the WLAN/Bluetooth or AUDIO function might not work properly. If the voltage is too high or there is a voltage burst during the startup, the module might be damaged permanently.
- If using LDO or DC-DC to supply power for the module, ensure that it outputs a rated current.

4.2 Temperature Feature

Table 4-2 W30 Temperature Feature

Module Status	Minimum Value	Typical Value	Maximum Value
Operating temperature	-25°C	25℃	85℃
Storage temperature	-45℃	-	90℃

If the module works at a temperature exceeding the thresholds, its RF performance of Wi-Fi or Bluetooth might be worse and the audio function does not work properly.

4.3 ESD Protection

Electronics need to pass several ESD tests. The following table shows the ESD capability of key pins of this module. It is recommended to add ESD protection based on the application to ensure product quality when designing a product.

Testing Point	Contact Discharge	Air Discharge
Power supply pins	±8 kV	±15 kV
GND	±8 kV	±15 kV
ANT	±8 kV	±15 kV
Cover	±8 kV	±15 kV
Others	±2 kV	±4 kV

Table 4-3 W30 ESD protection

NOTE NOTE

Testing environment: Humidity 45%; Temperature 25 \mathcal{C}

5 RF Feature 5.1 Work Band

Work bandParameterFrequencyWLAN 2.4 GHzCenter channel frequency2412~2484 MHzWLAN 5GHzCenter channel frequency4900~5925 MHzBluetoothCenter channel frequency2402~2480 MHz

Table 5-1 Work band

5.2 TX Power and RX Sensitivity

Work Band	Rate	Transmit Power	Receiving Sensitivity
802.11b (2.4G)	1/2/5.5/11Mbps	15 dBm	-75 dBm
802.11g (2.4G)	6/9/12/18/24/36Mbps	14 dBm	-75 dBm
	48/54Mbps	13.5 dBm	-70 dBm
802.11n (2.4G, 20MHz)	MCS0~MCS4	14 dBm	-70 dBm
	MCS5~MCS7	13.5 dBm	-65 dBm
802.11n (2.4G, 40MHz)	MCS0~MCS4	13.5 dBm	-67 dBm
	MCS5~MCS7	12.5 dBm	-60 dBm
802.11ac (2.4G, 20MHz)	MCS8	12 dBm	-57 dBm
802.11ac (2.4G, 40MHz)	MCS9	11 dBm	-55 dBm
	6/9/12/18/24Mbps	12 dBm	-74 dBm
802.11a (5G)	36/48Mbps	11 dBm	-67 dBm
	54Mbps	10 dBm	-65 dBm
802.11n/ac (5G, 20MHz)	MCS0~MCS2	12 dBm	-76 dBm
	MCS3~MCS5	11 dBm	-65 dBm
	MCS6~MCS7	9.5 dBm	-62 dBm
802.11n/ac (5G, 40MHz)	MCS0~MCS2	11 dBm	-75 dBm
	MCS3~MCS6	10 dBm	-62 dBm
	MCS7	9 dBm	-60 dBm
802.11ac (5G, 80MHz)	MCS8~MCS9	6.5 dBm	-50 dBm

 Table 5-2 Wi-Fi/Bluetooth TX power and RX sensitivity

Bluetooth	GFSK	8 dBm	-92 dBm
	π/4-DQPSK	7 dBm	-92 dBm
	8-DPSK	7 dBm	-85 dBm
	LE	3 dBm	-95 dBm

All the values above are obtained in the lab environment. The RX sensitivity is obtained within 10% system error rate.

6 Mechanical Features

6.1 Dimensions

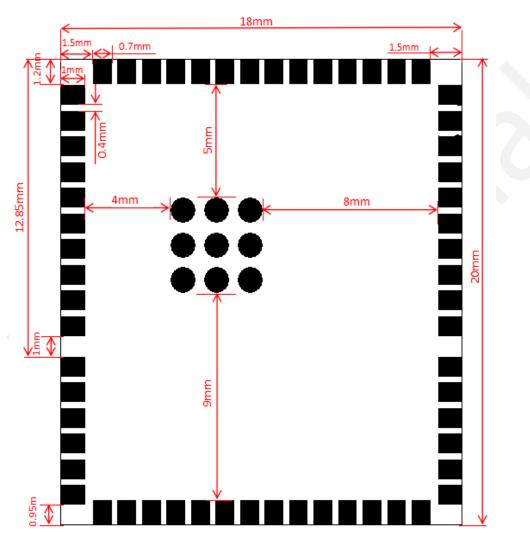


Figure 6-1 W30 dimensions(top view)

6.2 PCB Foot Print

LCC packaging is adopted to package the pins of the W30 module. Figure 6-2 shows the recommended PCB foot print (Unit: mm). Extend the pad around 1 mm to avoid short circuit caused by irregular flow of solder paste during the SMT process. Do not lay out any trace under the keepout area.

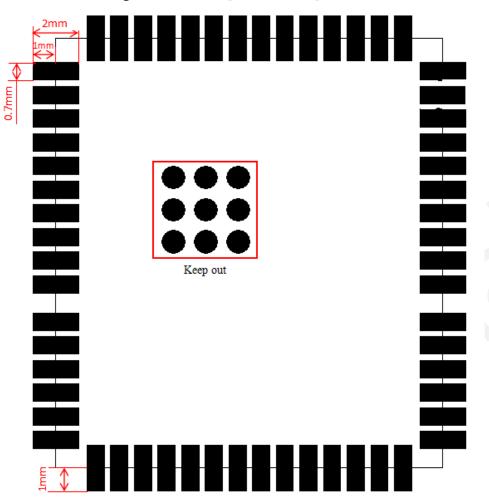


Figure 6-2 PCB foot print of W30 (top view)

Neowoy[•] 有方

7 Mounting and Packaging

7.1 Mounting the Module onto the Application Board

W30 is compatible with industrial standard reflow profile for lead-free SMT process. The reflow profile is process dependent, so the following recommendation is just a start point guideline:

- Make stencils with a thickness ranging from 0.12 mm to 0.15 mm, which can be adjusted according to the actual mounting conditions.
- The quality of the solder joint depends on the solder paste volume and the PCB flatness.
- Thin or long PCB might bend during SMT. So, use loading tools during the SMT and reflow soldering process to avoid poor solder joint caused by PCB bending.

For information about cautions in W30 storage and mounting, refer to *Neoway Module Reflow Manufacturing Recommendations*.

When manually desoldering the module, use heat guns with great opening, adjust the temperature to 250 degrees (depending on the type of the solder paste), and heat the module till the solder paste is melt. Then remove the module using tweezers. Do not shake the module in high temperatures while removing it. Otherwise, the components inside the module might get misplaced.

7.2 Package

W30 modules are packaged in sealed vacuum bags with dryer, humidity card, and tray on delivery to guarantee a long shelf life. Follow the same package method again in case of opened for any reasons.

If the module is exposed to air for more than 48 hours at conditions not worse than 30°C/60% RH, bake it at a temperature higher than 90 degree for more than 12 hours before SMT. Or, if the indication card shows humidity greater than 20%, the baking procedure is also required. Do not bake modules with the package tray directly.

8 SMT Furnace Temperature Curve

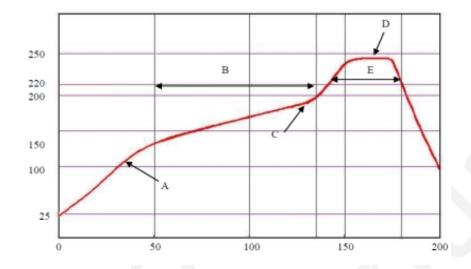


Figure 8-1 SMT furnace temperature curve

Technical parameters:

- Ramp up rate: 1 to 4 °C/sec
 Ramp down rate: -3 to -1 °C/sec
- Soaking zone: 150-180 °C, Time: 60-100 s
- Reflow zone: >220 °C, Time: 40-90 s
- Peak temperature: 235-250 °C

Do not use the kind of solder paste different from our module technique.

- The melting temperature of solder paste with lead is 35 °C lower than that of solder paste without lead. It is easy to cause faulty joints for BGA inside the module after second reflow soldering.
- When using only solder pastes with lead, please ensure that the reflow temperature is kept at 220 °C for more than 45 seconds and the peak temperature reaches 240 °C.

Neoway will not provide warranty for heat-responsive element abnormalities caused by improper temperature control.

9 Abbreviations

WLAN	Wireless Local Area Networks
SDIO	Secure Digital Input and Output Card
РСМ	Pulse Code Modulation
I2C	Inter-Integrated Circuit bus
I2S	Inter-IC Sound
UART	Universal asynchronous receiver-transmitter
ESD	Electronic Static Discharge
PCB	Printed Circuit Board
RF	Radio Frequency